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Abstract

Model-based reconstruction is a powerful framework for solving a variety of inverse problems in

imaging. The method works by combining a forward model of theimaging system with a prior model

of the image itself, and the reconstruction is then computedby minimizing a functional consisting of the

sum of two terms corresponding to the forward and prior models.

In recent years, enormous progress has been made in the problem of denoising, a special case of an

inverse problem where the forward model is an identity operator. A wide range of methods including non-

local means, dictionary-based methods, 3D block matching,TV minimization and kernel-based filtering

have proven that it is possible to recover high fidelity images even after a great deal of noise has

been added. Similarly, great progress has been made in improving model-based inversion when the

forward model corresponds to complex physical measurements in applications such as X-ray CT, electron-

microscopy, MRI, and ultrasound, to name just a few. However, combining state-of-the-art denoising

algorithms (i.e., prior models) with state-of-the-art inversion methods (i.e., forward models) has been a

challenge for many reasons.

In this report, we propose a flexible framework that allows state-of-the-art forward models of imaging

systems to be matched with state-of-the-art prior or denoising models. This framework, which we term as

Plug-and-Play priors, has the advantage that it dramatically simplifies software integration, and moreover,

it allows state-of-the-art denoising methods that have no known formulation as an optimization problem

to be used. We demonstrate with some simple examples how Plug-and-Play priors can be used to mix

and match a wide variety of existing denoising models with a tomographic forward model, thus greatly

expanding the range of possible problem solutions.

S. V. Venkatakrishnan and C. A. Bouman are with the School of Electrical and Computer Engineering, Purdue University, 465 Northwestern

Ave., West Lafayette, IN 47907-2035, USA. Tel: 765-494-6553, Fax: 765-494-3358, E-mail:{svenkata,bouman}@purdue.edu.

B. Wohlberg is with the Theoretical Division, Los Alamos National Lab, Los Alamos, NM, USA. E-mail: brendt@lanl.gov.
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I. I NTRODUCTION

Model-based reconstruction is a powerful framework for solving a variety of inverse problems in imag-

ing including denoising, deblurring, tomographic reconstruction, and MRI reconstruction. The method

typically involves formulating a model for the noisy measurement system (i.e., a forward model) and a

model for the image to be reconstructed (i.e., a prior model). The reconstruction is then computed by

minimizing a cost function that balances a fit to these two models. For example, a typical approach is

to compute the maximuma posteriori (MAP) estimate as the minimum of the sum of the log likelihood

forward model and the log probability of the prior distribution.

In recent years, there have been enormous advances in the solution of a particular inverse problem

generally referred to as image denoising [1], [2]. The problem of image denoising is to recover an

image that has been corrupted by noise, the most commonly considered noise model being additive

white Gaussian noise. Since image denoising is the simplest case of an inverse problem, the forward

model being the identity operator, research in this field tends to provide a fertile environment for the

creation of new prior models. Some denoising algorithms are based on an explicit regularized inversion

formulation using, for example, a MAP estimate; but in othercases, the denoising algorithms are directly

formulated as ad hoc non-linear estimates of the noiseless image. In fact, a number of very novel and

effective approaches have recently emerged for image denoising. Examples of new methods include a wide

variety of patch based non-local means approaches [3], generalizations of bi-lateral filtering approaches

[1], patch-based dictionary learning methods such as K-SVD [4], block-matching with transform-based

denoising such as BM3D [5], and a variety of total-variation[2], and Markov random field (MRF) based

approaches [6]. These new methods have demonstrated that it is possible to vastly improve on what was

previously believed to be possible.

In parallel with these efforts, researchers have been pioneering ways to create forward models for a

wide array of imaging and sensing systems from medical scanners [7] to microscopes [8]. Research in this

field has demonstrated that model-based inverse methods can greatly improve the quality of reconstructed

images [9]. However, since this research primarily deals with the challenges of accurately modeling large

and complex forward models and solving the associated optimization problems, there has been much

less emphasis on the incorporation of state-of-the-art prior models. Therefore, research in model-based

inversion has tended to lag behind from the perspective of advanced prior modeling; and moreover, has

not fully benefited from the recent progress in denoising methods.

In fact, recent progress has been made in incorporating advanced priors into general inverse problems.
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For example, patch based dictionary priors have been used ininverse imaging problems such as tomogra-

phy [10], [11] and MRI [12]. Furthermore, while BM3D may not naturally lend itself to formulation as a

prior, Danielyan et al. [13], [14] have adapted the BM3D [5] denoising for the inverse problem of image

deblurring. However, this approach is not directly applicable to a general inverse problem. So, while

some significant advances have been made in the integration ofadvanced prior and forward models, they

tend to be highly customized to the problem and currently no simple turn-key approach exists to match

denoising algorithms as priors for general inverse problems.

In this report, we propose a flexible framework for using denoising algorithms as priors for model-

based inversion. This framework, which we term Plug-and-Play priors, has the advantage that it simplifies

software integration, and moreover, it allows state-of-the-art denoising methods that are not explicitly

formulated as optimization problems to be used. For denoising algorithms based on well-behaved op-

timization criteria (e.g. - closed, proper and convex functions [15]), it can be easily shown that the

Plug-and-Play framework is convergent to the MAP estimate of the reconstruction. In more general

cases, we empirically demonstrate that the method converges robustly to a good solution. We show with

some simple examples how Plug-and-Play priors can be used to mix and match a wide variety of existing

denoising models with the type of complex forward model thatis typically used in applications such as

tomographic reconstruction. Consequently, this new approach can greatly expand the range of possible

models used in model-based inversion.

Our proposed Plug-and-Play framework is based on a direct application of the alternating directions

method of multipliers (ADMM) [15] that has recently become popular for the solution of a variety of MAP

estimation/regularized inverse problems [16]–[21]. Our application of ADMM works by first splitting the

state variable so as to decouple the prior and forward model terms of MAP estimation problem. The

application of the ADMM technique to the resulting constrained minimization problem then results in

two decoupled optimizations, one for the forward model and one for the prior model. We note that

this allows for a completely decoupled software implementation with one module corresponding to a

denoising algorithm only dependent on the prior, and a second module corresponding to a model-based

inversion with l2 regularization only dependent on the forward model. Importantly, this framework can

be used to solve a MAP reconstruction problem even when the explicit cost function corresponding to

the prior model is not known. Moreover, we also demonstrate empirically that the method can be used

with denoising algorithms such as BM3D that are not explicitly formulated as optimization problems.

In order to demonstrate the approach, we apply a wide range ofdenoising algorithms as Plug-and-Play

priors for a simple tomographic reconstruction problem using the well-known Shepp-Logan phantom.
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The results indicate that methods such as K-SVD [4], BM3D [5], PLOW [22], q-GGMRF [23], TV [2],

and discrete reconstruction (DR) [24] can all be easily applied as priors through direct use of software

implementations of the denoising algorithms. The implementation of the Plug-and-Play priors is very

simple and robust, and the observed convergence speed of theresulting iterative algorithm is comparable

to the convergence speed of a tightly integrated prior model, as is traditionally done with model based

reconstruction.

The organization of the rest of this report is as follows. In Section II we introduce the cost function

corresponding to the MAP estimation for tomographic reconstruction. In Section III we briefly discuss

the variable splitting and ADMM algorithm for solving the MAP estimation problem. In Section IV we

apply the algorithm on a phantom data set with different denoising algorithms (priors) and in Section V

we draw our conclusions.

II. MAP COST FUNCTION FOR SOLVING INVERSE PROBLEMS

Let y be aM × 1 measurement vector from which we desire to estimate the unknown x, a N × 1

vector. Letp(y|x) be the conditional probability density function (pdf) of the measurementsy given x,

andp(x) be the pdf of the unknown, then the MAP estimate ofx is given by

x̂ ← argmin
x
{− log p(y|x)− log p(x)}

x̂ ← argmin
x
{l(y;x) + s(x)} (1)

where l(y;x) = − log p(y|x) and− log p(x) = s(x) + terms independent ofx. In the special case of

l(y;x) = 1

2σ2

n

‖y − x‖22 +
M
2
log

(

2πσ2
n

)

the MAP estimate corresponds to denoising designed to remove

additive white Gaussian noise of varianceσ2
n. For this special case, we defineH(y;σ2

n) to be the operator

that denoises the signaly when it has been corrupted by additive Gaussian noise of varianceσ2
n. This

operator is then given by the solution to the following MAP optimization problem:

H(y;σ2
n) = argmin

x

{

1

2σ2
n

‖y − x‖22 + s(x)

}

. (2)

Sometimes it is useful to have an additional regularization parameter to control the relative effect of the

prior model on the reconstruction. To allow for this additional control, we can rewrite the estimation

problem as

x̂ ← argmin
x
{l(y;x) + βs(x)} , (3)

whereβ can be used to modulate the amount of regularization appliedto the inversion. Notice that when

β = 1 the problem is exactly the MAP estimation problem (1).
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III. VARIABLE SPLITTING AND ADMM

In order to separate the forward and prior terms in the MAP cost function, we first split the variablex

into two new variablesx andv, and reformulate equation (3) as the following constrainedoptimization

problem [16], [17].

(x̂, v̂) ← argmin
x,v

{l(y;x) + βs(v)}

subject tox = v . (4)

We then solve (4) by forming the augmented Lagrangian function and using the ADMM technique [15].

The augmented Lagrangian for this problem is given by

Lλ(x, v, u) = l(y;x) + βs(v) +
λ

2
‖x− v + u‖22 . (5)

whereu is a scaled dual variable andλ is the penalty parameter. The ADMM algorithm consists of

repeatedly performing the following steps until convergence.

x̂ ← argmin
x

Lλ(x, v̂, u)

v̂ ← argmin
v

Lλ(x̂, v, u)

u ← u+ (x̂− v̂) .

Notice that in generalλ does not effect the final result but controls the rate of convergence of the ADMM

algorithm.

If x̃ = v̂ − u and ṽ = x̂+ u then each iteration of the algorithm can be written as

x̂ ← argmin
x

{

l(y;x) +
λ

2
‖x− x̃‖22

}

(6)

v̂ ← argmin
v

{

λ

2
‖ṽ − v‖22 + βs(v)

}

(7)

u ← u+ (x̂− v̂). (8)

The first step only depends on the choice of forward model. The second step only depends on the choice

of prior and can be interpreted as a denoising operation as inequation (2).

In order to emphasize the modular structure of the ADMM update, we define the operatorF(y, x̃;λ)

as

F(y, x̃;λ) = argmin
x

{

l(y;x) +
λ

2
‖x− x̃‖22

}

. (9)

This function returns the MAP estimate ofx given the datay, using very simple quadratic regularization

to a value,x̃. We callF a simplified reconstruction operator. Notice thatF is also the proximal mapping
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[25] associated with the function1
λ
l(y;x). Using our definition of the simplified reconstruction operator

F(y, x̃;λ) from (9), and our definition of the denoising operatorH(y;σ2
n) from (2), we may now

reformulate the ADMM iterations as the following three steps.

x̂ ← F(y, x̃;λ) (10)

v̂ ← H(ṽ;
β

λ
) (11)

u ← u+ (x̂− v̂). (12)

The overall algorithm is summarized in Fig. 1. Importantly, using this Plug-and-Play framework, the

minimization can now be written as two independent softwaremodules - one for implementing the

simplified reconstruction operatorF(y, x̃;λ) and the other for implementing the denoising algorithm

H(ṽ;σ2
n). Furthermore changing the prior model only involves changing the implementation ofH(ṽ;σ2

n).

Thus the Plug-and-Play priors framework can be used to mix and match different denoising algorithms

(priors) with the forward model of interest. Notice that theminimization corresponding to the simplified

reconstruction operator and the denoising operator need not be exact. Instead, they can be replaced by the

approximate operators̃F and H̃ that do not minimize the respective cost functions but instead decrease

its value sufficiently. This is an important technique for speeding up the implementation of the ADMM

[15] and making the algorithm useful in practical applications.

We note that the variable splitting approach discussed herehas been exploited to solve a variety of

inverse problems [16], [17], [21], [26]. However the main motivation of this research was to create better

algorithms for solving the optimization problems resulting from regularized inversion. For example, this

variable splitting/ADMM approach has been used to more effectively solve problems withl1 norms, TV

norms, and positivity constraints that can create difficulties in conventional gradient based optimization.

In distinction to this earlier research, our primary goal isto use splitting strategies as a mechanism to

create a flexible framework to easily match prior models (embodied in the form of denoising algorithms)

with forward models.

Finally we note that in this report we do not discuss theoretical convergence properties of the Plug-and-

Play framework. While the ADMM is guaranteed to converge ifl and s are convex, closed and proper

functions andL0 has a saddle point [15], we observe via our numerical experiments that substitutingH

with denoising algorithms that do not explicitly correspond to a convex functions or even a strict

optimization problem, still produces a stable result. Thus we rely on empirical evidence from our

experiments to show that our framework produces a stable result.
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function [x̂]← RECONSTRUCT(y, β, λ)

% Inputs: Measurementsy, Regularizationβ, Augmented Lagrangian parameterλ

Initialize x̂

v̂ ← x̂, u← 0 // Initialize v̂ andu

σ2
n ←

β
λ

// Variance for denoising algorithm

while Stopping criteria are not metdo

x̃← v̂ − u

x̂← F(y, x̃;λ) // Only dependent on forward model

ṽ ← x̂+ u

v̂ ← H(ṽ;σ2
n) // Denoising operator only dependent on prior

u← u+ (x̂− v̂) // Update the scaled dual variableu

end while

end function

Fig. 1. Pseudocode for Plug-and-Play priors framework. In each iteration an alternating minimization is done. The first

minimization depends only on the likelihood function while the second minimizationonly requires the application of a denoising

algorithm. Thus introducing a new prior only requires introducing a new denoising software module.

IV. EXPERIMENTAL RESULTS

In this report we will restrict our simulations to the case where l(y;x) = 1

2
‖y − Ax‖2

Λ
, A is a

tomographic forward projector, andΛ is a diagonal weighting matrix. We will experiment with a variety

of state-of-the-art denoising techniques forH which may or may not explicitly be formulated as prior

models in a regularized optimization framework. We evaluate our method on a64 × 64 Shepp-Logan

phantom with values scaled between0 − 255. The phantom is forward projected at 141 views between

−70◦ and+70◦ and noise is added to simulate Poisson statistics. This type offorward model is widely

used in electron tomography [8], [27] where, due to mechanical constraints, the sample can only be tilted in

a limited range. We compare reconstructions using the Plug-and-Play priors framework by experimenting

with six different denoising techniques/priors - K-SVD [4],BM3D [5], PLOW [22], Total Variation (TV)

[28], q-GGMRF [23] and discrete reconstruction (DR) [24]. The regularization parameterβ is adjusted for

achieving the minimum root mean square error (RMSE) between the reconstruction and phantom. Instead

of using the simplified reconstruction operatorF in the ADMM loop, we use an approximate operator

F̃, which lowers the value of the cost function corresponding to F usingNIter number of iterations of
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TABLE I

COMPARISON OF THE MINIMUM ROOT MEAN SQUARE ERROR OF THE RECONSTRUCTION WITH RESPECT TO THE ORIGINAL

PHANTOM FOR VARIOUS PRIORS. WE OBSERVE THAT THE THE PATCH BASED NONLOCAL DENOISING OPERATORS GIVE A

LOW RMSE RECONSTRUCTION.

Algorithm RMSE β

K-SVD [4] 2.32 4.32

BM3D [5] 2.51 1.39

PLOW [22] 2.70 1.50

TV [28] 3.42 0.47

q-GGMRF [23] 4.46 0.28

Discrete Recon [24] 1.32 1.00

iterative coordinate descent (ICD) [29] with random order updates [7]. The algorithm is initialized with

a filtered back projection reconstruction. The value ofNIter is set to 1 for all algorithms except the DR

prior in which case it is set to20. The value ofλ is set to1/75 for all experiments except the DR prior,

in which case it is set to1/20. Since the DR prior is non-convex we observed that the value ofλ effects

the final solution. The number of levels in the case of the discrete reconstruction prior is set to6 - the

number present in the original phantom. Further details of the parameters used for different denoising

algorithms are given in Appendix A.

Fig. 2 shows the reconstructions resulting from the use of thesix denoising algorithms as prior models,

and Table. I shows the corresponding RMSE for each prior. For this very simple Shepp-Logan image, the

DR prior results in the lowest RMSE. However, the other methodsresult in a comparable RMSE. Most

importantly, each denoising algorithm was easily matched to the tomographic forward model and for each

prior, the convergence to the fixed solution was stable and robust (see Fig. 3). Interestingly, the BM3D

algorithm is formulated without the explicit use of an optimization framework, so the Plug-and-Play

methodology provides a simple and robust framework to incorporate it as a prior.

Finally we compare the convergence of the ADMM technique to the direct implementation of the MAP

estimate using a q-GGMRF prior model that is tightly integrated into the cost function [23]. The traditional

approach of tight integration allows for more flexibility in the design of optimization algorithms, so it

might be expected to have faster convergence; but this faster convergence is at the cost of a less modular

and flexible design. Nonetheless, one would expect that both the Plug-and-Play and traditional formulation
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(a) Phantom

(b) K-SVD (c) BM3D (d) PLOW

(e) TV (f) q-GGMRF (g) Discrete reconstruction

Fig. 2. Comparison of the minimum RMSE reconstructions using differentpriors for the Shepp-Logan phantom projected in

a limited angular range (+/ − 70◦). All images are displayed in the window[0 − 255]. (a) Phantom (b) K-SVD (c) BM3D

(d) PLOW (e) TV (f) q-GGMRF (g) Discrete reconstruction. We observe that the patch based denoising algorithms (b) - (d)

work well producing qualitatively comparable reconstructions to the typically used priors like TV and q-GGMRF. Some of the

features in the phantom are not reconstructed accurately due to the limited angle nature of the projection data. The discrete prior

(g) produces a very accurate reconstruction for this phantom.
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Fig. 3. Comparison of the convergence (RMSE between the reconstruction and the original phantom) as a function of iteration

number for the different denoising models used. We note that the convergence for all algorithms is robust and stable. Furthermore

the convergence rates across the different denoising algorithms are similar.

should yield the same result when run to convergence. Moreover, for this case, the denoising algorithm

corresponds to the minimization of a convex function, and hence the ADMM technique is known to be

globally convergent provided that the inner minimizationsare either exact or are run for a sufficiently

large number of iterations [15]. Fig. 4 shows the RMSE as a function of iteration number for the tightly

integrated approach where the ICD algorithm is used to solvethe tomographic inversion compared to the

two step ADMM approach with a q-GGMRF denoising prior. We setthe number of inner iterations in

the q-GGMRF denoising step in ADMM to 1 for a fair comparison.It is possible that this will not lead

to a monotonically decreasing cost function because the inner minimizations are not exact. However we

still observe that the RMSE decreases with iteration. While the ADMM approach is slower than ICD for

our implementation and requires greater memory to store theauxiliary variables [20], [21], it provides

a more flexible framework for incorporating different priors. Furthermore several techniques have been

proposed to speed up the ADMM algorithm [15], [20] which can be applied to the Plug-and-Play priors

framework.

V. CONCLUSIONS

In this report, we proposed a flexible framework that allows state-of-the-art forward models of imaging

systems to be matched with state-of-the-art prior or denoising models. The framework, which is based

on variable splitting and use of the ADMM algorithm, simplifies the software architecture by decoupling
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Fig. 4. Comparison of the convergence of ICD versus ADMM for the q-GGMRF prior withp = 2, q = 1.2, c = 1/100, σx =

0.594. The convergence is measured by using the RMSE between the reconstruction and the original phantom. The number of

inner iterations in the ADMM is set to 1 for a fair comparison. We observe that ICD converges faster but ADMM’s speed is

comparable. However the time taken per iteration in ADMM will be higher due tothe two step minimization.

the forward and prior models. Furthermore the framework enables state-of-the-art denoising algorithms,

even those that have no known formulation as an optimizationproblem, to be used as priors/regularizers

for model based inversion.
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APPENDIX A

PARAMETERS FOR DENOISING ALGORITHMS

The parameters of the algorithms are adjusted for the minimumRMSE tomographic reconstruction. In

this section we specify the parameters used for the different denoising routines.
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• K-SVD : We use the K-SVD denoising code from http://www.cs.technion.ac.il/∼ronrubin/software.

html. The following parameters were used for denoising:

– Size of patch :4× 4

– Size of dictionary : 3600 patches

– Number of iterations: 10

– For theβ achieving minimum RMSE (see Table. I) we getσn =
√

β
λ
= 18.

The other parameters are set to the default values in the software. The K-SVD dictionary is initialized

with the default settings in the software. For each subsequent outer iteration of ADMM, the K-SVD

dictionary is initialized with the final dictionary from the previous iteration.

• BM3D : We use the BM3D code from http://www.cs.tut.fi/∼foi/GCF-BM3D/index.html\#ref\ software.

– For theβ achieving minimum RMSE (see Table. I) we setσn =
√

β
λ
= 10.192 as input to the

BM3D routine.

The other parameters are set to the default values in the software.

• PLOW : The code for PLOW was downloaded from http://users.soe.ucsc.edu/∼priyam/PLOW/. We

use the following parameters:

– Block size : 5

– For theβ achieving minimum RMSE (see Table. I) we setσn =
√

β
λ
= 10.607.

The other parameters are set to the default values in the software.

• q-GGMRF : The q-GGMRF denoising operator is given by

x̂← argmin
x







1

2σ2
n

‖y − x‖22 +
1

pσp
x

∑

{i,j}∈χ

wij
|xi − xj |

p

1 + |xi−xj

c
|p−q







(13)

where p, q, c, σx, wij are the q-GGMRF parameters,σ2
n is the variance of the white noise in the

data, andχ is the set of all neighboring pixels (8 point neighborhood).The weights are set to1
12

for

diagonal neighbors and to1
6

for horizontal and vertical neighbors. The parameters of thedenoising

are set top = 2, q = 1.2, c = 1/100, σx = 0.29 which was found to produce a reasonable result for

images with white noise of varianceσ2
n. The random order ICD with surrogate functions [7] is used

to implement the cost optimization.

– For theβ in Table. I we setσn =
√

β
λ
= 4.583 as input to the denoising operator.

– Number of ICD iterations: 10

• Total Variation : The code for TV denoising was downloaded from http://www.ceremade.dauphine.fr
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/∼peyre/matlab/image/content.html. It minimizes the cost function :

x̂ ← argmin
x

{

‖y − x‖22 +
λTV

2
TV(x)

}

(14)

x̂ ← argmin
x

{

1

2σ2
n

‖y − x‖22 +
cTV

2
TV(x)

}

(15)

whereλTV = 2cTV σ
2
n and TV(x) represents the total variation operator. We fixcTV to 1/10.02.

This value was found to produce a reasonable denoising resultfor additive white Gaussian noise of

varianceσ2
n.

– Therefore for theβ in Table. I we setσn =
√

β
λ
= 5.937.

– Number of iterations of the optimization routine: 100

• Discrete Reconstruction (DR) prior : A denoising operation corresponding to the discrete recon-

struction prior (one that restricts the number of classes/values taken by the pixels in the reconstruction

to K) is given by

(µ̂, b̂) ← argmin
µ,b∈{1,··· ,K}M







1

2σ2
n

M
∑

i=1

(yi − µ(bi))
2 + cDiscrete

∑

{i,j}∈χ

wijδ(bi 6= bj)







(16)

wherey is aM ×1 vector containing the noisy image,σ2
n is the noise variance,b is aM ×1 vector

of labels corresponding to each pixel,µ : {1, · · · ,K} → R is a function that maps each label to

a discrete output level (class mean),χ consists of all pairs of neighboring pixels,wij weights the

interaction between neighboring pixels ,δ is an indicator function, andcDiscrete is a constant. The

denoising operation above is a non-convex optimization problem and we will describe an algorithm

to find a local minimum. To minimize the cost function in (16) weuse an alternating minimization

strategy. The algorithm consists of repeatedly performing the following steps for each pixeli.

– Class label update

b̂i ← argmin
k∈{1,··· ,K}







1

2σ2
n

(yi − µ̂(bi))
2 + cDiscrete

∑

j∈χi

wijδ (bj 6= k)







(17)

whereχi is the set of neighbors of pixeli.

– Mapping function update

Taking derivative of the cost function in (16) with respect to eachµ(k) ∀k ∈ 1, · · · ,K and

setting it to zero gives

µ̂(k) ←
1

Nk

M
∑

i=1

yiδ(b̂i = k) (18)
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whereNk =

M
∑

i=1

δ(b̂i = k). Notice that this step simply sets the mapping for a given class to

the mean value of the pixels assigned to that class.

Thus the denoising operator corresponding to the discrete reconstruction prior is given by

H(y;σ2
n) = µ

b̂
.

whereµ
b̂
= [µ̂(b̂1), · · · , µ̂(b̂M )]t.

In practice we set the number of iterations to10 as we found this to produce good results for

the denoising problem. We fixcDiscrete to 4 as this produced a good denoising result for additive

white Gaussian noise of varianceσ2
n. The weights are set to1

12
for diagonal neighbors and to1

6
for

horizontal and vertical neighbors. In order to initialize the class labelsb we use Otsu’s method [30]

on a low pass filtered version of the noisy inputy.
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